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Nonlinear modulation of periodic waves in the small dispersion limit
of the Benjamin-Ono equation
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The Whitham modulation theory is used to construct large time asymptotic solutions of the Benjamin-Ono
(BO) equation in the small dispersion limit. For a wide class of initial data, asymptotic solutions are repre-
sented by a single-phase periodic solution of the BO equation with slowly varying amplitude and wave
number. The Whitham system of modulation equations for these wave parameters has a very simple structure,
and it can be solved exactly under appropriate boundary conditions. It is found that the oscillating zone
expands with time, and eventually evolves into a train of solitary waves. In the case of localized initial data, the
number density function of solitary waves is derived in a closed form. The resulting expression coincides with
the corresponding formula obtained from the asymptotic theory based on the conservation laws of the BO
equation. For steplike initial data, the total number of created solitary waves increases without limit in pro-
portion to time.[S1063-651X98)04412-3

PACS numbgs): 03.40.Kf, 03.40.Gc, 02.98-p

[. INTRODUCTION theory, we derived modulation equations for the wave pa-
rameters characterizing the single-phase periodic wave solu-
Since the pioneering work of Whithapd,2], who devel- tion of the BO equation, and then constructed an asymptotic
oped the modulation theory of periodic waves for certainsolution for the initial value problem of the BO equation
class of water wave equations such as the Korteweg—deith a step initial condition. In the context of water waves,
Vries (KdV) and Boussinesq equations, a large number ofhis solution is relevant to modeling the nonlinear evolution
studies has been devoted to analyzing the mathematicaf internal bore waves in deep fluids.
structure of the modulation equations. Gurevich and Pitae- Although our previous work9] dealt with a specific ini-
vsky [3] investigated the onset and development of the nontial value problem, here we shall construct the asymptotic
dissipative shock waves caused by the breaking of a wavsolutions of the BO equation for a wide class of initial con-
front within the framework of the Whitham modulation ditions while employing the Whitham modulation theory. In
theory for the KdV equation. Lax and Levermddd consid-  the case of the BO equation, the Whitham averaged system
ered the small dispersion limit of the KdV equation on thewas seen to possess a very simple structure compared with
basis of the inverse scattering transfoft8T), and obtained the corresponding system for the KdV equation. In this pa-
the same equations as Whitham’s modulation equations. Aser, the modulation equations for the BO equation will be
result, their theory provided a justification of Whitham’s solved explicitly for both localized and steplike initial con-
modulation theory. Tsarep5] proved the complete integra- ditions to obtain the main feature of the solution in the small
bility of the modulation equations as a Hamiltonian systemdispersion limit. The material presented here will provide a
See a review pap€i6] on this topic. In regard to recent simple approximate method for constructing solutions of the
progress of the Whitham modulation theory for various non-BO equation without recourse to IST.
linear evolution equations, one may refer to R¢R8. In Sec. Il, we summarize the modulation equations for the
Recently, the author investigated the modulation problenBO equation. In Sec. I, we seek solutions of the modulation
[9] of the periodic wave described by the Benjamin-Onoequations and investigate their asymptotic properties. An ex-

(BO) equation[10-12 plicit calculation is performed for two different types of ini-
tial conditions which will help one to understand the techni-
Uit ulc+ eHu,=0, u=u(x,t), (1.18  cal details. Section IV is devoted to concluding remarks.
whereu represents the wave profilel, is the Hilbert trans-
form defined by 1. MODULATION EQUATIONS
In this section, we shall briefly describe the Whitham
1 = u(y,t) . ' ) ! ; )
Hu(x,t)= — pf dy, (1.1b modulation equations which can be derived using a varia-
T ) YTX tional principle. The BO equatiofil.1) can be derived by

) » . ) means of the variational principle
ande is a positive parameter characterizing the magnitude of

the dispersion. In particular, we considered the behavior of
the solution in the small dispersion limit. Using Whitham’s 5J J L( ¢y, by, d)dx dt=0, 2.0

*Electronic address: matsuno@po.cc.yamaguchi-u.ac.jp where the Lagrangiah is given by
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with u=¢,. In the following analysis, we consider the _— — .
modulation problem of the single-phase periodic wave squ—On substituting Eq(2.9) for L, the above equations become

tion of the BO equation. To be more specific, we take the

: ; B B>y
uniform wavetrain of the form K+ > N ] =0, (2.12
b=+ D(ble), (2.33 t "
. w w2
with —2?+,8 —| K2+ P =0. (2.13
t X
= pBx—, (2.3b
In addition to these equations, we must supplement the equa-
0=kx— wt. (2.39  tions
It then turns out from Eq(2.3) that Bi+ v«=0, (2.14
k _
U= =B+ D' (6le), (2.4 Kt wy=0, (2.19

. _ o which follow from the compatibility conditiong,= ¢, and
where the prime appended b denotes the differentiation 6,.= 6,,. Note that in the modulation theory, the wave pa-

with respect to its argument. The explicit single-phase peritameters are assumed to be local quantities and the functions
odic solution is given by10]  and @ must be defined by the relatiofs= ¢, , y=— i,
k=6, andw=— 6;. If the effect of the wave modulation is

_ 4k? +8 (2.5 negligible, these equations are readily integrated to yield
JaZ+ak?—a cog6le) ' Egs. (2.3b and (2.39. Substituting Eqs(2.14 and (2.195
into Eq.(2.12), we find thaf (8%/2)— y],=0, so that we can
wherea is the amplitude of the wave defined by take
a:%(umax_umin)- (2.6 ,82
Y= ?! (216)

The phase velocitg of the wave is then expressed in terms

of a, k, andB as . : .
A without loss of generality. Thus only the three equations are

o 1 seen to be independent. In terms@fk and c, these equa-
c=1=3 VaZ+4k?+B. (2.7 tions are written in the forms
It should be remarked that the periodic wd2eb) reduces to B+ BBx=0, (2.17
a solitary wave of algebraic type in the limit of zero wave-
number, i.e.k—0. ki+(ke)x=0, (2.18
In accordance with the Whitham modulation theory, the
next step is to derive the time evolution of the parameggrs c;+kk,+cc,=0. (2.19

v, K, o, andc, which are assumed to be slowly varying func-
tions of x andt. For this purpose, consider the average La-The system of equation&.17)—(2.19 describes the slow

grangian change of the parameters characterizing the wave, and they
are called modulation equations. An important feature of the
— 1 (o7~ - above system of equations is that the equationsfis com-
E—f L d6, (9=0le). 2.9 y 9 e eq
27 Jo ' pletely decoupled from other equations and may be solved

independently. It is interesting to observe that the system of
If we use Eqs(2.2), (2.5, (2.7), and(2.8), we can evaluate equations (2.1§ and (2.19 coincides with the one-
the integral W|th respect {é’ and Obtain the result dimensional gaS dynamiC equations fOI’ isentropic ﬂOW When
the ratio of the specific ratio is equal tq[ 2].
0’ Bo 1 5 1 In conclusion, it is worthwhile to show that the system of
C K + 7) + 5 B = 5 By. 2.9 equationg2.17)—(2.19 can also be derived by averaging the
local conservation laws of the BO equation, the first three of

The Euler equations for the paifg,y) and ,) are given, which are obtained directly from Eq1.1) in a simple man-

_ k3
:§—k

respectively, by ner. They may be written in the forms
gL 9 il u?
——— — —=0, (2.10 U+ ?+6Hux) =0, (2.20
ot gy 9x B

X
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— + e(U?Huy+ uH(uuy))

+
4
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u3
§+EUHUX

+ €2

1, 1 5
> Uy, — Uyt > (Huy)

X

+e(uu,Hu,+u,H(uu,))=0.

(2.22 ; :

_ X+ X

Substituting Eq(2.5) into the above equations and then av-
eraging, we obtain the following system of modulation equa
tions fork, ¢, and g

2
2kc+ '8—

(2k+B)+ > =0,

(2.23

X

2kc+ —

> +

t

(2.29

:82
| :

2 3
3 k3+2kc?+ —) =0,
X

3

2 B
‘3 2
(3k+2kc+3

B4
+| 2ke(k?+c?) + T

t

0.
(225

In deriving Egs.(2.24 and (2.25, we used the fact that for
any 2m-periodic functions andg, there follow the relations
fHf=0 andfHg+gHf=0, which may be proved by ex-
pandingf and g in the Fourier series and using the formula
He'*™=i sgnkd®. One can easily confirm that the above
system of equations is equivalent to the system of equatio

(2.17—(2.19.

Ill. SOLUTIONS OF THE MODULATION EQUATIONS

A. Statement of the problem

FIG. 1. The three-valued solution of the Hopf equation after the
breaking time. The functioffi, (f_) represents the branch of the
solution in the range>x, (x<x_), wherex, (x_) is the leading
(trailing) edge determined by the conditiatx/du=0. The func-
tionsf,, f,, andf; represent, respectively, the branch BC,

CD of the solution.

As time evolves, the above solution will become multi-
valued function after a breaking tintg. This situation is
depicted schematically in Fig. 1, where the multivalued re-
gion lies between the trailing edge and the leading edge
Xy .

At a later time aftett,, however, one cannot neglect the
effect of dispersion. The basic assumption in applying the
Whitham modulation theory to the present problem is that
aftert,, the multivalued region_<x=<x, in Fig. 1) may be
replaced by an oscillating zone whose profile is described by
a periodic wavd2.5 with the slowly varying parameteis
k, and B. This solution must be joined smoothly at the
boundaries<.. with the solution(3.3) of the Hopf equation.
The problem under consideration is thus reduced to finding

ngxplicit functional forms of these parameters as wekkasn

terms of the initial condition.

In the following analysis, we shall treat the case where
solution (3.3) becomes a three-valued function between
andx, . In this situation, the single-phase periodic solution
(2.5 will be found to be appropriate to describe the oscillat-

In this section, we shall construct the asymptotic solution§ng characteristic of the solution in the multivalued region.

for the initial value problem of the BO equation when the

dispersion parameteris very small. Here, we consider the

initial value
u(x,0)=f(x), (3.1

(i) f(x)=0, f(x)—0 as|x|—, and(ii) f has a single maxi-

mum. The initial value with nonvanishing boundary values

B. Solutions

The general solutions of the modulation equatithd?7)—
(2.19 can be found immediately, and they are written in
implicit forms as[9]

can be treated in the same way, for which we shall describe

only the final result at the end of this subsection. The main

subject here is to construct an asymptotic solution within the

framework of the Whitham modulation theory described in

Sec. Il.
In the limit of e—0, the initial evolution of the wave
profile will be governed by the Hopf equation

U;+uu,=0, (3.2
which simply stems from Eql1.1) by neglecting the disper-
sive term. The solution of Eq3.2) with the initial condition
(3.1) can be found in an implicit form as

u(x,t)=f(x—u(x,t)t). (3.3

c+k=g;(x—(c+k)t), (3.4
c—k=go(x—(c—k)), 3.5
B=gs(x— ), (3.6

whereg;, g,, andgs are arbitrary functions. To specify the
unknown functionsy;(j=1,2,3), we must impose appropri-
ate boundary conditions. These conditions are the same as
those introduced by Gurevich and Pitaevdl8] in their
study of the modulation problem for a cnoidal wave solution
of the KdV equation. We shall now detall it.

At the trailing edgex=x_ the wave amplitude vanishes,
since at this point the oscillation would begin with an infini-
tesimal amplitude. Then we require that the average value of
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u should be joined smoothly with the solution of the Hopf

equation. Explicitly, these conditions can be written as

a=0, u=f_, atx=x_. 3.7
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ga(x—Bt)=f3(x,1), (X_sX=X,).

In view of the definition(see Fig. 1, f; are single-valued
functions ofx in the rangex_<x=x, for a fixedt(>ty).
Once the initial valud is specified,f; are constructed from

At the leading edgex=x.., on the other hand, the wave solution(3.3), as shown in Fig. 1. Using Eq&3.4)—(3.6) and

number should vanish, since, near this point, the wave profil
would be approximated by a solitary wave. In addition, thet
averaged solution must be joined with the solution of the

Hopf equation, namely,

k=0, u=f,, atx=x,. (3.8

We shall now apply these conditions to the general solu-
tions (3.4—(3.6). For this purpose, one first needs the aver-

age ofu which is now easily calculated using E@.5 and

the definition(2.8) of the average over one period. The result

IS

u=2k+8. (3.9
At the trailing edgex=x_, from Eqgs.(2.7) and (3.7) we
obtain the relatiort=k+ 8. Substituting this into Eqg3.4)
and(3.5), one has

2k+ B=g1(x_—(2k+ B)t), (3.10
B=ga(x_—pBt). (3.11)

It also follows from Eqs(3.7) and(3.9) that
2k+B="F_(x_,t). (3.12

On the other hand, Eq3.6) yields, atx=x_,
B=gs(x-—BY). 3.13

Combining Eqgs(3.10—(3.13, we can see that
gi(x——f_t)=f_(x_,1),

Oo(x_—Bt)=gz(x_—pBt), atx=x_. (3.19

Applying a similar procedure at the leading edgex. , we
find that

c=0:(X4—ct), c=gy(x;—ct),

B=g3(x+—Bt), (3.19
B=1.(x 1), (3.1
which enable us to take
91(X+ —ct)=ga(x, —ct),
ga(x, —f t)=Ff,(x,,t) atx=x,. (3.19

The explicit functional forms of the solutior8.4)—(3.6) sat-
isfying conditions(3.14) and (3.17 are readily found, and
they are simply expressed as follows:

g1(x—(c+k)t)=f1(x,1),

g2(x—(c—=K)t)=f5(x,1), (3.18

£3.19, the wave parameters, k, and 8 are expressed in

erms off; as follows:

c(x,t)=3[f1(x,t)+ fo(x,1)], (3.19
k(xit)z%[fl(xvt)_fZ(X1t)]! (320
B(x,t)=f3(x,t). (3.21

It now remains to determing.. in terms of the initial con-
dition. However, this can be done simply by solving the
equationdx/du=0 with x=ut+f(u), wheref " denotes

the inverse function of. Since we are concerned here with
the three-valued function, there exist only two solutians

as seen from Fig. 1. Thus we have completed the construc-
tion of the solutions.

Remark:Although the result presented here is applicable
to localized initial data, we can also construct solutions for
initial data with nonvanishing boundary conditions. One ex-
ample is a monotonically decreasing functidfix) with
boundary conditions such thdt(x)—u, as x——<« and
f(xX)—0 asx— +o, whereu, is a positive constant. Obvi-
ously, the solution of the Hopf equation for this initial value
breaks down in a finite time, and becomes a three-valued
function. A special case for such initial data is a step initial
condition already treated in R¢B]. Applying a similar pro-
cedure to that developed here for the localized initial data,
one can show that solutions to the modulation equations take
exactly the same forms as those given by E§sl9—(3.21).

C. Asymptotic behavior of solutions for large time

Here we shall investigate the behavior of solutions
(3.19-(3.21) for large time. The periodic solution given
by Eg. (2.5 will be found to evolve into a train of solitary
waves in the range_<x<x, . Suppose, for simplicity, that
f(x) has a maximunuy atx=0. Whent tends to infinity, the
functionsf, andf, in Fig. 1 will approach the straight line
u=x/t in the rangex_=sx=sugt. Let V=x/t(x_/tsV
<ug), u,=fq(Vtt), and u,=f,(Vt,t). Then it follows
from Eq. (3.3 that

Vi—ut=f-Yuy), Vi—ut=f11(u,), (3.22

wheref - *(f 1) denotes the positivenegative branch of the
inverse functionf ~1. See Fig. 2.

If we use the approximation; ~u,~V=x/t ast—o», we
find, from Eqgs.(3.20 and (3.22 and the relationsi;=f;
andu,=f,, thatk(x,t) behaves in the limit of -« as

(X% (X%
“(? ‘“H

If we denote the two solutions of the equatibfx)=V(0
<V=Ug) by x; and X,(x;<0<X,), i.e., x;=f (V) and
x,=f71(V) (see Fig. 2, we can rewrite Eq(3.23 as

X
(0<?suo> . (3.23

1
k(X,t)~ 2_t
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1. Localized initial condition

71w

We first consider the localized initial condition. As an
example, we suppose the following initial profile

f(x)= (Up>0). (3.29

Up
x°+1

In this example, solution$3.19—(3.21) to the modulation
equations can be written in closed form. In fact, each branch
of the three-valued function in Fig. 1 is obtained by solving
the cubic equatiom[ (x—ut)?+1]=u,. Since we are con-
cerned with the behavior of the solutions for large time, we
shall describe only the leading terms of the large time as-
ymptotics of various quantities. The leading and trailing
edges of the solution behave like

FIG. 2. The inverse functiofi~*(u). The functionf}* (f_%)
represents the positivénegative branch of the inverse function
f_l;lThe ordinate§>1<1 and x, are given, respectively, by, X~ Uot, x,~3><2_2/3(u0t)1’3. (3.29
=f_H(V) andx,=f_ (V).

In the rangex_<x=<x,, k, ¢, o, anda have the asymptotic

1
KX, ~ 5 (Xp=Xa). (324 TO'MS

1/1 1/2
Since bothx; and x, are finite forV of order 1, relation Kxb~¢ (E_l) : (3303

(3.24) shows that the local wave number vanishes in the limit

of t— except for a narrow region near the trailing edge. It c(x,t)~Uugpz, (3.30b
follows from these observations that the oscillating zone ex-

pands with time, and evolves into a train of solitary waves Ug 172

after the elapse of a long time from the wave breaking. To o(X,t)~ T Z(;‘ 1) - (3.309
estimate the asymptotic distribution of the amplitude, we in-

troduce the number density functiéi(A), which gives the 1/1 1/2
numberdNg of solitary waves with amplitudes within the a(x,t)~2| (ugz)?— v (E_l , (3.300
interval (A,A+dA). Then
dx K wherez=x/ugt. At the edgex.., B8 behaves like
dNg=F(A)dA= — = — dXx, 3.2 _
S ( ) A 21€ ( 5) ,8(X+ ,t)~u0 lt*21 B(Xf ,t)~273/2Ué/3[72/3.
3.3)

where\ is the local wavelength defined by=2me/k. Us-

ing the fact that the amplitude of the BO solitary wave isIntegrating the relationg,=k and 6,= — »w with k and o
related to the velocity by the relatioh=4V=4x/t, from  given, respectively, by Eq$3.303 and(3.309, we can de-
Egs.(3.24 and(3.295 we obtain the formula termine the phase of the wave as

1
F(A)~ 2o (Xo—X1)=

T6me )dx, (3.26 0(x,t)~ug z(l—z)+sin*1\/2—g, (3.32

16me fA<4f(x

where, in the last expression, the integration interval is subwhere the integration constant has been chosen such that the

jected to the conditioA<4f(x). The total numbeN; of phase function vanishes at the leading edgel. The enve-

solitary evolving from the initial conditionu(x,0)=f(x) is  lopes of the maximum and minimum values wére found
then given by from Egs.(2.5), (3.30, and(3.31), and they take the forms

: [ S (3.333
= ~ u — T ~ T .
N fo F(A)dA~ — ch(x)dx. (3.27) N T B~
Expressiong3.26 and (3.27) completely coincide with the 4k2
corresponding formulas obtained from the asymptotic theory uminzﬁ +B=0(t"25). (3.33h
a a

based on the conservation laws of the BO equafti$)14].

Relations(3.33 show that the amplitude of each solitary
wave varies linearly with distance. In particular, at the lead-
Here we shall apply the procedure developed in Sec. Ill Bng edgex=x,~ugt, the amplitude attains four times the
to the two different types of initial conditions, and investi- maximum amplitude of the initial profile. Using Eq8.26),
gate the asymptotic behavior of the solutions. (3.27), and(3.28), the number density functioR(A) and the

D. Examples
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total numberNg of solitary waves evolved from the initial One can see from E¢3.42 that the total number of solitary

profile are given, respectively, by waves increases indefinitely in proportion to time. This fact
2 is in striking contrast to the corresponding result for the lo-
1 (ﬁ—l) for 0<A<4u, calized initial data, in which case the total number is found

F(A)~{ 4me | A (3.34 to be definite as long as the integral given in E§.27)

0, for A>4uy, converges. We also note that these leading order asymptotics

coincide with those corresponding to a step initial condition

Ug [9] for which expression$3.38), (3.40, (3.41), and(3.42

Ns~ de’ (339 pecome exact.

Remark: The results derived above are not the specific
These results are completely in agreement with the correfeatures of the solution depending on the initial condition
sponding formulas derived on the basis of the conservatio(B.36). In fact, we can obtain the same asymptotic expres-
laws of the BO equation in the small dispersion lifili8,14.  sions for a wide class of monotonically decreasing initial

o N data.
2. Steplike initial condition

The second example is concerned with the initial condi-
tion with a nonvanishing boundary value. We consider a IV. CONCLUDING REMARKS

steplike profile of the form ] ]
In this paper, we developed an approximate method for

Ug solving the initial value problem of the BO equation by
f(x)= > (1—tanhx), (up>0). (336 means of the Whitham modulation theory. In particular, we
were concerned with the wave profile evolving from the lo-
Without entering into the detail, we shall describe only thecalized initial data when the effect of dispersion is very
final results. The leading terms for the asymptotic expansionsmall. We then find that the corresponding problem for the
of various quantities take the following forms: steplike initial data can be dealt with in the same way. For
the localized initial data, the large time asymptotic of the
solution consists of a train of solitary waves whose ampli-
tude distribution can be determined in a closed form in terms
of the initial condition. The result obtained here is com-
Ug pletely in agreement with the formu[d3,14] derived inde-
k(x,t)~ 5 (1-2), (3.383 pendently from the asymptotic theory based on the conser-
vation laws of the BO equation.
A few numerical analyses have been performed on the

1
X4~ Ugt, x_~§ In(ugt), (3.39

u
c(x,t)~ 70 (1+2), (3.380 initial value problem of the BO equation. Chrisfi#5] cal-
culated an asymptotic profile for a steplike initial condition
u2 which simulates the evolution of an internal bore wave in
w(k,t)~ ZO (1-2%), (3.380 deep fluids. The result is qualitatively in agreement with the

analytical result presented in Sec. Il D. In this respect, it

should be remarked that IST for the BO equalfjit6,17] has

not yet been applied to the nonvanishing initial condition like
A 2ugt _ 1 a step profile. Milohet al.[18] performed a similar calcula-

BXs =g, B .0~(20)"% (339 45 for localized initial conditions under the small disper-

where z=x/upt. Expressions(3.39 are valid within the sion parameter. Their result for the number of the created

range (1/2t)In(Uugt)<z<1. The phas@is now expressed as solitary waves coincides completely with the analytical ex-
pressionEq. (3.27)].

a(k,t)~2ugz, (3.380

ugt In contrast to a large number of studies devoted to the
ox)~—— (1~ 2)%. (340  modulation problem for the periodic waves of the KdV equa-
tion, there appeared few works dealing with the correspond-
AlSO, Uy andu,i, are given, respectively, by ing problem for the BO equation. One reason for this may be
attributed to the nonlocal nature of the dispersive term ex-
Upmax~ Uo(1+Z+ 2\2), umin~u0(1+z_2\/2)- pressed by the Hilbert transform. The present study shows

(3.41  that the Whitham modulation theory is also applicable to the

BO equation, and gives the main feature of the solution.

As in the case of the localized initial condition exemplified Surprisingly, the mathematical structure of the modulation
above, the amplitude of the leading solitary wave is the fouequations for the BO equation is seen to be extremely simple
times the maximum amplitude of the initial profile. The compared with that for the KdV equation. From a rigorously
number of created solitary waves is estimated from Edsmathematical point of view, however, the various results pre-
(2.9 and(3.40, and it gives sented in this paper should be justified on the basis of an
exact method of solution such as IST, or an analog of the

(3.42 Lax-Levermore theory for the KdV equation. These prob-

' lems will be left for future studies.

2

" 8w

N
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