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Nonlinear modulation of periodic waves in the small dispersion limit
of the Benjamin-Ono equation

Y. Matsuno*
Department of Applied Science, Faculty of Engineering, Yamaguchi University, Ube 755-8611, Japan

~Received 12 May 1998!

The Whitham modulation theory is used to construct large time asymptotic solutions of the Benjamin-Ono
~BO! equation in the small dispersion limit. For a wide class of initial data, asymptotic solutions are repre-
sented by a single-phase periodic solution of the BO equation with slowly varying amplitude and wave
number. The Whitham system of modulation equations for these wave parameters has a very simple structure,
and it can be solved exactly under appropriate boundary conditions. It is found that the oscillating zone
expands with time, and eventually evolves into a train of solitary waves. In the case of localized initial data, the
number density function of solitary waves is derived in a closed form. The resulting expression coincides with
the corresponding formula obtained from the asymptotic theory based on the conservation laws of the BO
equation. For steplike initial data, the total number of created solitary waves increases without limit in pro-
portion to time.@S1063-651X~98!04412-2#

PACS number~s!: 03.40.Kf, 03.40.Gc, 02.90.1p
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I. INTRODUCTION

Since the pioneering work of Whitham@1,2#, who devel-
oped the modulation theory of periodic waves for cert
class of water wave equations such as the Korteweg
Vries ~KdV! and Boussinesq equations, a large number
studies has been devoted to analyzing the mathema
structure of the modulation equations. Gurevich and Pit
vsky @3# investigated the onset and development of the n
dissipative shock waves caused by the breaking of a w
front within the framework of the Whitham modulatio
theory for the KdV equation. Lax and Levermore@4# consid-
ered the small dispersion limit of the KdV equation on t
basis of the inverse scattering transform~IST!, and obtained
the same equations as Whitham’s modulation equations.
result, their theory provided a justification of Whitham
modulation theory. Tsarev@5# proved the complete integra
bility of the modulation equations as a Hamiltonian syste
See a review paper@6# on this topic. In regard to recen
progress of the Whitham modulation theory for various no
linear evolution equations, one may refer to Refs.@7,8#.

Recently, the author investigated the modulation probl
@9# of the periodic wave described by the Benjamin-O
~BO! equation@10–12#

ut1uux1eHuxx50, u5u~x,t !, ~1.1a!

whereu represents the wave profile,H is the Hilbert trans-
form defined by

Hu~x,t !5
1

p
PE

2`

` u~y,t !

y2x
dy, ~1.1b!

ande is a positive parameter characterizing the magnitude
the dispersion. In particular, we considered the behavio
the solution in the small dispersion limit. Using Whitham
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theory, we derived modulation equations for the wave
rameters characterizing the single-phase periodic wave s
tion of the BO equation, and then constructed an asympt
solution for the initial value problem of the BO equatio
with a step initial condition. In the context of water wave
this solution is relevant to modeling the nonlinear evoluti
of internal bore waves in deep fluids.

Although our previous work@9# dealt with a specific ini-
tial value problem, here we shall construct the asympto
solutions of the BO equation for a wide class of initial co
ditions while employing the Whitham modulation theory.
the case of the BO equation, the Whitham averaged sys
was seen to possess a very simple structure compared
the corresponding system for the KdV equation. In this p
per, the modulation equations for the BO equation will
solved explicitly for both localized and steplike initial con
ditions to obtain the main feature of the solution in the sm
dispersion limit. The material presented here will provide
simple approximate method for constructing solutions of
BO equation without recourse to IST.

In Sec. II, we summarize the modulation equations for
BO equation. In Sec. III, we seek solutions of the modulat
equations and investigate their asymptotic properties. An
plicit calculation is performed for two different types of in
tial conditions which will help one to understand the tech
cal details. Section IV is devoted to concluding remarks.

II. MODULATION EQUATIONS

In this section, we shall briefly describe the Whitha
modulation equations which can be derived using a va
tional principle. The BO equation~1.1! can be derived by
means of the variational principle

dE E L~f t ,fx ,f!dx dt50, ~2.1!

where the LagrangianL is given by
7934 © 1998 The American Physical Society
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L5
1

2
f tfx1

1

6
fx

31
e

2
fxHfxx , ~2.2!

with u5fx . In the following analysis, we consider th
modulation problem of the single-phase periodic wave so
tion of the BO equation. To be more specific, we take
uniform wavetrain of the form

f5c1F~u/e!, ~2.3a!

with

c5bx2gt, ~2.3b!

u5kx2vt. ~2.3c!

It then turns out from Eq.~2.3! that

u5fx5b1
k

e
F8~u/e!, ~2.4!

where the prime appended toF denotes the differentiation
with respect to its argument. The explicit single-phase p
odic solution is given by@10#

u5
4k2

Aa214k22a cos~u/e!
1b, ~2.5!

wherea is the amplitude of the wave defined by

a5 1
2 ~umax2umin!. ~2.6!

The phase velocityc of the wave is then expressed in term
of a, k, andb as

c[
v

k
5

1

2
Aa214k21b. ~2.7!

It should be remarked that the periodic wave~2.5! reduces to
a solitary wave of algebraic type in the limit of zero wav
number, i.e.,k→0.

In accordance with the Whitham modulation theory, t
next step is to derive the time evolution of the parametersb,
g, k, v, andc, which are assumed to be slowly varying fun
tions of x and t. For this purpose, consider the average L
grangian

L̄[
1

2p E
0

2p

L dũ, ~ ũ5u/e!. ~2.8!

If we use Eqs.~2.2!, ~2.5!, ~2.7!, and~2.8!, we can evaluate
the integral with respect toũ, and obtain the result

L̄5
k3

3
2kS v2

k2 2
bv

k
1g D1

1

6
b32

1

2
bg. ~2.9!

The Euler equations for the pairs~b,g! and (k,v) are given,
respectively, by

]

]t

]L̄

]g
2

]

]x

]L̄

]b
50, ~2.10!
-
e

i-

-

]

]t

]L̄

]v
2

]

]x

]L̄

]k
50. ~2.11!

On substituting Eq.~2.9! for L̄, the above equations becom

S k1
b

2 D
t

1S v1
b2

2
2

g

2D
x

50, ~2.12!

S 22
v

k
1b

t
D 2S k21

v2

k2 2g D
x

50. ~2.13!

In addition to these equations, we must supplement the e
tions

b t1gx50, ~2.14!

kt1vx50, ~2.15!

which follow from the compatibility conditionsc tx5cxt and
u tx5uxt . Note that in the modulation theory, the wave p
rameters are assumed to be local quantities and the func
c andu must be defined by the relationsb5cx , g52c t ,
k5ux andv52u t . If the effect of the wave modulation is
negligible, these equations are readily integrated to yi
Eqs. ~2.3b! and ~2.3c!. Substituting Eqs.~2.14! and ~2.15!
into Eq.~2.12!, we find that@(b2/2)2g#x50, so that we can
take

g5
b2

2
, ~2.16!

without loss of generality. Thus only the three equations
seen to be independent. In terms ofb, k andc, these equa-
tions are written in the forms

b t1bbx50, ~2.17!

kt1~kc!x50, ~2.18!

ct1kkx1ccx50. ~2.19!

The system of equations~2.17!–~2.19! describes the slow
change of the parameters characterizing the wave, and
are called modulation equations. An important feature of
above system of equations is that the equation forb is com-
pletely decoupled from other equations and may be sol
independently. It is interesting to observe that the system
equations ~2.18! and ~2.19! coincides with the one-
dimensional gas dynamic equations for isentropic flow wh
the ratio of the specific ratio is equal to 3@2#.

In conclusion, it is worthwhile to show that the system
equations~2.17!–~2.19! can also be derived by averaging th
local conservation laws of the BO equation, the first three
which are obtained directly from Eq.~1.1! in a simple man-
ner. They may be written in the forms

ut1S u2

2
1eHuxD

x

50, ~2.20!
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S u2

2 D
t

1S u3

3
1euHuxD

x

2euxHux50, ~2.21!

S u3

3
1euHuxD

t

1Fu4

4
1e„u2Hux1uH~uux!…

1e2S 1

2
ux

22uuxx1
1

2
~Hux!

2D G
x

1e„uuxHux1uxH~uux!…50. ~2.22!

Substituting Eq.~2.5! into the above equations and then a
eraging, we obtain the following system of modulation equ
tions for k, c, andb:

~2k1b! t1S 2kc1
b2

2 D
x

50, ~2.23!

S 2kc1
b2

2 D
t

1S 2

3
k312kc21

b3

3 D
x

50, ~2.24!

S 2

3
k312kc21

b3

3 D
t

1F2kc~k21c2!1
b4

4 G
x

50.

~2.25!

In deriving Eqs.~2.24! and ~2.25!, we used the fact that fo
any 2p-periodic functionsf andg, there follow the relations
f H f 50 and f Hg1gH f50, which may be proved by ex
pandingf andg in the Fourier series and using the formu
Heikx5 i sgnkeikx. One can easily confirm that the abov
system of equations is equivalent to the system of equat
~2.17!–~2.19!.

III. SOLUTIONS OF THE MODULATION EQUATIONS

A. Statement of the problem

In this section, we shall construct the asymptotic solutio
for the initial value problem of the BO equation when t
dispersion parametere is very small. Here, we consider th
initial value

u~x,0!5 f ~x!, ~3.1!

~i! f (x)>0, f (x)→0 asuxu→`, and~ii ! f has a single maxi-
mum. The initial value with nonvanishing boundary valu
can be treated in the same way, for which we shall desc
only the final result at the end of this subsection. The m
subject here is to construct an asymptotic solution within
framework of the Whitham modulation theory described
Sec. II.

In the limit of e→0, the initial evolution of the wave
profile will be governed by the Hopf equation

ut1uux50, ~3.2!

which simply stems from Eq.~1.1! by neglecting the disper
sive term. The solution of Eq.~3.2! with the initial condition
~3.1! can be found in an implicit form as

u~x,t !5 f „x2u~x,t !t…. ~3.3!
-

ns

s

e
n
e

As time evolves, the above solution will become mul
valued function after a breaking timetb . This situation is
depicted schematically in Fig. 1, where the multivalued
gion lies between the trailing edgex2 and the leading edge
x1 .

At a later time aftertb , however, one cannot neglect th
effect of dispersion. The basic assumption in applying
Whitham modulation theory to the present problem is t
aftertb the multivalued region (x2<x<x1 in Fig. 1! may be
replaced by an oscillating zone whose profile is described
a periodic wave~2.5! with the slowly varying parametersa,
k, and b. This solution must be joined smoothly at th
boundariesx6 with the solution~3.3! of the Hopf equation.
The problem under consideration is thus reduced to find
explicit functional forms of these parameters as well asx6 in
terms of the initial condition.

In the following analysis, we shall treat the case whe
solution ~3.3! becomes a three-valued function betweenx2

andx1 . In this situation, the single-phase periodic soluti
~2.5! will be found to be appropriate to describe the oscill
ing characteristic of the solution in the multivalued region

B. Solutions

The general solutions of the modulation equations~2.17!–
~2.19! can be found immediately, and they are written
implicit forms as@9#

c1k5g1„x2~c1k!t…, ~3.4!

c2k5g2„x2~c2k!t…, ~3.5!

b5g3~x2bt !, ~3.6!

whereg1 , g2 , andg3 are arbitrary functions. To specify th
unknown functionsgj ( j 51,2,3), we must impose appropr
ate boundary conditions. These conditions are the sam
those introduced by Gurevich and Pitaevsky@3# in their
study of the modulation problem for a cnoidal wave soluti
of the KdV equation. We shall now detail it.

At the trailing edgex5x2 the wave amplitude vanishes
since at this point the oscillation would begin with an infin
tesimal amplitude. Then we require that the average valu

FIG. 1. The three-valued solution of the Hopf equation after
breaking time. The functionf 1 ( f 2) represents the branch of th
solution in the rangex.x1 (x,x2), wherex1(x2) is the leading
~trailing! edge determined by the condition]x/]u50. The func-
tions f 1 , f 2 , and f 3 represent, respectively, the branchesAB, BC,
CD of the solution.
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u should be joined smoothly with the solution of the Ho
equation. Explicitly, these conditions can be written as

a50, ū5 f 2 , at x5x2 . ~3.7!

At the leading edgex5x1 , on the other hand, the wav
number should vanish, since, near this point, the wave pro
would be approximated by a solitary wave. In addition, t
averaged solution must be joined with the solution of
Hopf equation, namely,

k50, ū5 f 1 , at x5x1 . ~3.8!

We shall now apply these conditions to the general so
tions ~3.4!–~3.6!. For this purpose, one first needs the av
age ofu which is now easily calculated using Eq.~2.5! and
the definition~2.8! of the average over one period. The res
is

ū52k1b. ~3.9!

At the trailing edgex5x2 , from Eqs. ~2.7! and ~3.7! we
obtain the relationc5k1b. Substituting this into Eqs.~3.4!
and ~3.5!, one has

2k1b5g1„x22~2k1b!t…, ~3.10!

b5g2~x22bt !. ~3.11!

It also follows from Eqs.~3.7! and ~3.9! that

2k1b5 f 2~x2 ,t !. ~3.12!

On the other hand, Eq.~3.6! yields, atx5x2 ,

b5g3~x22bt !. ~3.13!

Combining Eqs.~3.10!–~3.13!, we can see that

g1~x22 f 2t !5 f 2~x2 ,t !,

g2~x22bt !5g3~x22bt !, at x5x2 . ~3.14!

Applying a similar procedure at the leading edgex5x1 , we
find that

c5g1~x12ct!, c5g2~x12ct!,

b5g3~x12bt !, ~3.15!

b5 f 1~x1 ,t !, ~3.16!

which enable us to take

g1~x12ct!5g2~x12ct!,

g3~x12 f 1t !5 f 1~x1 ,t ! at x5x1 . ~3.17!

The explicit functional forms of the solutions~3.4!–~3.6! sat-
isfying conditions~3.14! and ~3.17! are readily found, and
they are simply expressed as follows:

g1„x2~c1k!t…5 f 1~x,t !,

g2„x2~c2k!t…5 f 2~x,t !, ~3.18!
le

e

-
-

t

g3~x2bt !5 f 3~x,t !, ~x2<x<x1!.

In view of the definition~see Fig. 1!, f j are single-valued
functions ofx in the rangex2<x<x1 for a fixed t(.tb).
Once the initial valuef is specified,f j are constructed from
solution~3.3!, as shown in Fig. 1. Using Eqs.~3.4!–~3.6! and
~3.18!, the wave parametersc, k, and b are expressed in
terms of f j as follows:

c~x,t !5 1
2 @ f 1~x,t !1 f 2~x,t !#, ~3.19!

k~x,t !5 1
2 @ f 1~x,t !2 f 2~x,t !#, ~3.20!

b~x,t !5 f 3~x,t !. ~3.21!

It now remains to determinex6 in terms of the initial con-
dition. However, this can be done simply by solving t
equation]x/]u50 with x5ut1 f 21(u), wheref 21 denotes
the inverse function off. Since we are concerned here wi
the three-valued function, there exist only two solutionsx6 ,
as seen from Fig. 1. Thus we have completed the const
tion of the solutions.

Remark:Although the result presented here is applica
to localized initial data, we can also construct solutions
initial data with nonvanishing boundary conditions. One e
ample is a monotonically decreasing functionf (x) with
boundary conditions such thatf (x)→u0 as x→2` and
f (x)→0 asx→1`, whereu0 is a positive constant. Obvi
ously, the solution of the Hopf equation for this initial valu
breaks down in a finite time, and becomes a three-val
function. A special case for such initial data is a step init
condition already treated in Ref.@9#. Applying a similar pro-
cedure to that developed here for the localized initial da
one can show that solutions to the modulation equations
exactly the same forms as those given by Eqs.~3.19!–~3.21!.

C. Asymptotic behavior of solutions for large time

Here we shall investigate the behavior of solutio
~3.19!–~3.21! for large time. The periodic solutionu given
by Eq. ~2.5! will be found to evolve into a train of solitary
waves in the rangex2<x<x1 . Suppose, for simplicity, tha
f (x) has a maximumu0 at x50. Whent tends to infinity, the
functions f 1 and f 2 in Fig. 1 will approach the straight line
u5x/t in the range x2<x<u0t. Let V5x/t(x2 /t<V
<u0), u15 f 1(Vt,t), and u25 f 2(Vt,t). Then it follows
from Eq. ~3.3! that

Vt2u1t5 f 2
21~u1!, Vt2u2t5 f 1

21~u2!, ~3.22!

wheref 1
21( f 2

21) denotes the positive~negative! branch of the
inverse functionf 21. See Fig. 2.

If we use the approximationu1;u2;V5x/t ast→`, we
find, from Eqs.~3.20! and ~3.22! and the relationsu15 f 1
andu25 f 2 , thatk(x,t) behaves in the limit oft→` as

k~x,t !;
1

2t F f 1
21S x

t D2 f 2
21S x

t D G S 0,
x

t
<u0D . ~3.23!

If we denote the two solutions of the equationf (x)5V(0
,V<u0) by x1 and x2(x1,0,x2), i.e., x15 f 2

21(V) and
x25 f 1

21(V) ~see Fig. 2!, we can rewrite Eq.~3.23! as
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k~x,t !;
1

2t
~x22x1!. ~3.24!

Since bothx1 and x2 are finite for V of order 1, relation
~3.24! shows that the local wave number vanishes in the li
of t→` except for a narrow region near the trailing edge
follows from these observations that the oscillating zone
pands with time, and evolves into a train of solitary wav
after the elapse of a long time from the wave breaking.
estimate the asymptotic distribution of the amplitude, we
troduce the number density functionF(A), which gives the
numberdNs of solitary waves with amplitudes within th
interval (A,A1dA). Then

dNs5F~A!dA5
dx

l
5

k

2pe
dx, ~3.25!

wherel is the local wavelength defined byl52pe/k. Us-
ing the fact that the amplitude of the BO solitary wave
related to the velocity by the relationA54V54x/t, from
Eqs.~3.24! and ~3.25! we obtain the formula

F~A!;
1

16pe
~x22x1!5

1

16pe E
A,4 f ~x!

dx, ~3.26!

where, in the last expression, the integration interval is s
jected to the conditionA,4 f (x). The total numberNs of
solitary evolving from the initial conditionu(x,0)5 f (x) is
then given by

Ns5E
0

`

F~A!dA;
1

4pe E
2`

`

f ~x!dx. ~3.27!

Expressions~3.26! and ~3.27! completely coincide with the
corresponding formulas obtained from the asymptotic the
based on the conservation laws of the BO equation@13,14#.

D. Examples

Here we shall apply the procedure developed in Sec. I
to the two different types of initial conditions, and inves
gate the asymptotic behavior of the solutions.

FIG. 2. The inverse functionf 21(u). The function f 1
21 ( f 2

21)
represents the positive~negative! branch of the inverse function
f 21. The ordinatesx1 and x2 are given, respectively, byx1

5 f 2
21(V) andx25 f 1

21(V).
it
t
-

s
o
-

-

y

B

1. Localized initial condition

We first consider the localized initial condition. As a
example, we suppose the following initial profile

f ~x!5
u0

x211
~u0.0!. ~3.28!

In this example, solutions~3.19!–~3.21! to the modulation
equations can be written in closed form. In fact, each bra
of the three-valued function in Fig. 1 is obtained by solvi
the cubic equationu@(x2ut)211#5u0 . Since we are con-
cerned with the behavior of the solutions for large time,
shall describe only the leading terms of the large time
ymptotics of various quantities. The leading and traili
edges of the solution behave like

x1;u0t, x2;33222/3~u0t !1/3. ~3.29!

In the rangex2<x<x1 , k, c, v, anda have the asymptotic
forms

k~x,t !;
1

t S 1

z
21D 1/2

, ~3.30a!

c~x,t !;u0z, ~3.30b!

v~x,t !;
u0

t
zS 1

z
21D 1/2

, ~3.30c!

a~x,t !;2F ~u0z!22
1

t2 S 1

z
21D G1/2

, ~3.30d!

wherez[x/u0t. At the edgesx6 , b behaves like

b~x1 ,t !;u0
21t22, b~x2 ,t !;223/2u0

1/3t22/3.
~3.31!

Integrating the relationsux5k and u t52v with k and v
given, respectively, by Eqs.~3.30a! and ~3.30c!, we can de-
termine the phase of the wave as

u~x,t !;u0FAz~12z!1sin21Az2
p

2 G , ~3.32!

where the integration constant has been chosen such tha
phase function vanishes at the leading edgez51. The enve-
lopes of the maximum and minimum values ofu are found
from Eqs.~2.5!, ~3.30!, and~3.31!, and they take the forms

umax5
4k2

Aa214k22a
1b;

4x

t
, ~3.33a!

umin5
4k2

Aa214k21a
1b5O~ t22/3!. ~3.33b!

Relations~3.33! show that the amplitude of each solita
wave varies linearly with distance. In particular, at the lea
ing edgex5x1;u0t, the amplitude attains four times th
maximum amplitude of the initial profile. Using Eqs.~3.26!,
~3.27!, and~3.28!, the number density functionF(A) and the
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total numberNs of solitary waves evolved from the initia
profile are given, respectively, by

F~A!;H 1

4pe S 4u0

A
21D 1/2

for 0,A<4u0

0, for A.4u0 ,

~3.34!

Ns;
u0

4e
. ~3.35!

These results are completely in agreement with the co
sponding formulas derived on the basis of the conserva
laws of the BO equation in the small dispersion limit@13,14#.

2. Steplike initial condition

The second example is concerned with the initial con
tion with a nonvanishing boundary value. We conside
steplike profile of the form

f ~x!5
u0

2
~12tanhx!, ~u0.0!. ~3.36!

Without entering into the detail, we shall describe only t
final results. The leading terms for the asymptotic expansi
of various quantities take the following forms:

x1;u0t, x2;
1

2
ln~u0t !, ~3.37!

k~x,t !;
u0

2
~12z!, ~3.38a!

c~x,t !;
u0

2
~11z!, ~3.38b!

v~k,t !;
u0

2

4
~12z2!, ~3.38c!

a~k,t !;2u0z, ~3.38d!

b~x1 ,t !;u0e22u0t, b~x2 ,t !;~2t !21, ~3.39!

where z5x/u0t. Expressions~3.38! are valid within the
range (1/2u0t)ln(u0t)<z<1. The phaseu is now expressed a

u~x,t !;2
u0

2t

4
~12z!2. ~3.40!

Also, umax andumin are given, respectively, by

umax;u0~11z12Az!, umin;u0~11z22Az!.
~3.41!

As in the case of the localized initial condition exemplifie
above, the amplitude of the leading solitary wave is the f
times the maximum amplitude of the initial profile. Th
number of created solitary waves is estimated from E
~2.5! and ~3.40!, and it gives

Ns;
u0

2t

8pe
. ~3.42!
e-
n

i-
a

s

r

s.

One can see from Eq.~3.42! that the total number of solitary
waves increases indefinitely in proportion to time. This fa
is in striking contrast to the corresponding result for the
calized initial data, in which case the total number is fou
to be definite as long as the integral given in Eq.~3.27!
converges. We also note that these leading order asympt
coincide with those corresponding to a step initial conditi
@9# for which expressions~3.38!, ~3.40!, ~3.41!, and ~3.42!
become exact.

Remark:The results derived above are not the spec
features of the solution depending on the initial conditi
~3.36!. In fact, we can obtain the same asymptotic expr
sions for a wide class of monotonically decreasing init
data.

IV. CONCLUDING REMARKS

In this paper, we developed an approximate method
solving the initial value problem of the BO equation b
means of the Whitham modulation theory. In particular,
were concerned with the wave profile evolving from the
calized initial data when the effect of dispersion is ve
small. We then find that the corresponding problem for
steplike initial data can be dealt with in the same way. F
the localized initial data, the large time asymptotic of t
solution consists of a train of solitary waves whose amp
tude distribution can be determined in a closed form in ter
of the initial condition. The result obtained here is com
pletely in agreement with the formula@13,14# derived inde-
pendently from the asymptotic theory based on the con
vation laws of the BO equation.

A few numerical analyses have been performed on
initial value problem of the BO equation. Christie@15# cal-
culated an asymptotic profile for a steplike initial conditio
which simulates the evolution of an internal bore wave
deep fluids. The result is qualitatively in agreement with t
analytical result presented in Sec. III D. In this respect
should be remarked that IST for the BO equation@16,17# has
not yet been applied to the nonvanishing initial condition li
a step profile. Milohet al. @18# performed a similar calcula
tion for localized initial conditions under the small dispe
sion parameter. Their result for the number of the crea
solitary waves coincides completely with the analytical e
pression@Eq. ~3.27!#.

In contrast to a large number of studies devoted to
modulation problem for the periodic waves of the KdV equ
tion, there appeared few works dealing with the correspo
ing problem for the BO equation. One reason for this may
attributed to the nonlocal nature of the dispersive term
pressed by the Hilbert transform. The present study sh
that the Whitham modulation theory is also applicable to
BO equation, and gives the main feature of the soluti
Surprisingly, the mathematical structure of the modulat
equations for the BO equation is seen to be extremely sim
compared with that for the KdV equation. From a rigorous
mathematical point of view, however, the various results p
sented in this paper should be justified on the basis of
exact method of solution such as IST, or an analog of
Lax-Levermore theory for the KdV equation. These pro
lems will be left for future studies.
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